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Dario Fontanel, Fabio Cermelli, Massimiliano Mancini, Barbara Caputo 
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Comparison
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Image Fully-Convolutional Network Label

Synthesizer Synthesized
image

Due to semantic segmentation scenes 

complexity

Generative approaches tend to produce 

artifacts while synthesizing pixels of known 

classes

Reconstruction (top) of SPADE [1] on an image from StreetHazards dataset (middle) [2].
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ResNet-50 architecture [67] as backbone and PSPNet [26] as head module.

area under the 
Precision-Recall curve
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Positive Rate (FPR) at

95% of recall

FPR95AUPR

area under the True Positive 
Rate and False Positive Rate 

curve

AUROC
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new classes over time using only 

image-level labels
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1D tensor
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convolutional

layers

Method
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The PASCAL Visual Object Classes (VOC) Challenge. Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J. and Zisserman, A, IJCV10



Weakly supervised Incremental Learning for Semantic Segmentation
Fabio Cermelli, Dario Fontanel, Antonio Tavera, Marco Ciccone, Barbara Caputo

15-5 

15 classes f irst, 

5 classes added

10-10

10 classes f irst, 

10 classes added

Pascal VOC 2012
20 semantic classes + background

mIoU

Intersectio
n

over
Union
(IoU)

=
area of overlap

area of union

Standard fully supervised incremental learning

Comparisons

Fully supervised IL methods

Used to generate pseudo-labels of f l ine and train

the

Architecture

Weakly-supervised methods
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its class centroid is greater than Δy, the loss 
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Δ

Class-specific rejection thresholds
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Open World Recognition (Avg) Open World Recognition (Harm)

RGB-D Object

K. Lai, L. Bo, X. Ren, D. Fox, 

A large-scale hierarchical multi-view rgb-d 

object dataset, ICRA-11

Without Unknown (no rejection) Without Unknown (with rejection)

15

Categories: 26 known + 25 unknown

Incremental steps: 11 first + 5 each

Results
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Open World Recognition (Avg) Open World Recognition (Harm)

Without Unknown (no rejection) Without Unknown (with rejection)

15

CORE-50

V. Lomonaco and D. Maltoni, 

Core50: a new dataset and benchmark for 

continuous object recognition, CoRL-17

Categories: 5 known + 5 unknown

Incremental steps: 2 first + 1 each

Results
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15

• Three datasets containing the same 51 daily-life 

objects

• Different acquisition conditions

• Standard protocol: 26 (known) + 25 (unknown)

11 (initial step) + 5 (each 

incremental step)

synROD ROD ARID

Benchmark 
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15

Benchmark 

synROD

Synthetic dataset generated utilizing 

publicly freely available 3D models.

Reproduction of realistic lighting.

Unsupervised Domain Adaptation through Inter-modal Rotation for RGB-D Object Recognition, 

Loghmani Mohammad Reza, Robbiano Luca, Planamente Mirco, Park Kiru, Caputo Barbara and Vincze

Markus, RAL 20
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15

ROD

Objects captured in a 

controlled scenario.

No clutter or changes 

in illumination or 

background, only 

varying camera 

angles.

Benchmark 
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15

More challenging environment with 

objects depicted against various 

backgrounds, scales, views, lighting, and 

occlusions.

ARID

Benchmark 

Recognizing Objects In-the-wild: Where Do We Stand?, Loghmani Mohammad Reza, Caputo Barbara and Vincze

Markus, ICRA 18
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15

Synthetic-to-Real

Without Unknown (no rejection) Without Unknown (with rejection) Open World Recognition (Harm)

Are OWR models Robust to Domain Shift?
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Constrained-to-Unconstrained

Without Unknown (no rejection) Without Unknown (with rejection) Open World Recognition (Harm)

Are OWR models Robust to Domain Shift?
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101Visual content taken from Volpi, R., & Murino, V.. Addressing model vulnerability to distributional shifts over image transformation sets. (ICCV 19)

An evolutionary-based algorithm select the set 
of transformations that results in the worst
model performance and randomly applies a 
subset of them.

Data augmentation with 

transformation sets (RSDA)

Benchmark
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An evolutionary-based algorithm select the set 

of

Data augmentation with 

transformation sets (RSDA)

Visual content taken from Gidaris, S., Singh, P., & Komodakis, N.. Unsupervised representation learning by predicting image rotations. (ICLR18)

By employing an auxiliary self-supervised task, 
the model concentrates on discriminative 
invariances and regularities, enhancing
generalization to new domains

Self-supervised learning with 

relative rotations (RR)
performance and randomly applies a subset of 

them.

transformations that results in the worst model

Benchmark
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By employing an auxiliary self-supervised

task, the

Self-supervised learning with 

relative rotations (RR)

The model learns to classify features 
that have been corrupted by removing
the elements that mostly contributed to a 
correct classification of the 
corresponding sample

Regularization through self-

challenging (SC)

Visual content taken from Huang, Z., Wang, H., Xing, E. P., & Huang, D. Self-Challenging Improves Cross-Domain Generalization. (ECCV20)

An evolutionary-based algorithm select the set 

of

Data augmentation with 

transformation sets (RSDA)

performance and randomly applies a subset of 

them.

transformations that results in the worst model

domains.

model concentrates on discriminative 

invariancesand regularities, enhancing generalization to 

new

Benchmark
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Synthetic-to-Real

Without Unknown (No rejection) Without Unknown (with rejection) Open World Recognition (Harm)

Can DG methods address the problem?
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15

Without Unknown (No rejection) Without Unknown (with rejection) Open World Recognition (Harm)

Constrained-to-Unconstrained

Can DG methods address the problem?
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We introduced PAnS that learns class-specific prototypes overcoming the 

limitations of the softmax operation in anomaly segmentation.

We introduced WILSON that learns to generate pseudo labels to train a 

segmentation network from image level labels only, reducing annotation costs.

We introduced the first benchmark to assess OWR methods under shifting visual domains 

and laid the foundations for further research.

We introduced B-DOC that adopts a global-to-clustering training loss objective, and a

learnable rejection threshold per each class.

Detection of the unknown

Incremental learning

Unified framework 

Impact of domain shift
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OWR approaches need to collect and label a new set of images every time a new 

class is discovered, usually involving a human in the loop.

Open World Recognition methods 

• Adopt an active learning pipeline to identify the most meaningful data to be 

labelled 

• Investigate how to generate pseudo-labels to avoid the labelling process

• Adopt a few shot approach that requires limited amounts of labelled data



Thank you for the attention!
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